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1 Summary 

The research conducted under this grant concerned the application of the theory of partially observ- 
able Markov decision processes (POMDPs) to the design of guidance algorithms for controlling the 
motion of unmanned aerial vehicles (UAVs) with on-board sensors to improve tracking of multiple 
ground targets. While POMDP problems are intractable to solve exactly, principled approximation 
methods can be devised based on the theory that characterizes optimal solutions. A new approxi- 
mation method called nominal belief-state optimization (NBO) was proposed. When combined with 
other application-specific approximations and techniques within the POMDP framework, NBO pro- 
duced a practical design that coordinated the UAVs to achieve good long-term mean-squarcd-error 
tracking performance in the presence of occlusions and dynamic constraints. The flexibility of the 
design was demonstrated by extending the objective to reduce the probability of a track swap in 
ambiguous situations, with the positive side-effect of improving the mean-squared-error tracking 
performance as well. 

The personnel contributing to this research arc Scott Miller and Zachary Harris of Numcrica 
Corp., and Prof. Edwin Chong of Colorado State University The following articles were produced 
as an outcome of this grant: [25, 7, 27, 26]. 

2 Introduction 

Interest in unmanned aerial vehicles (UAVs) for applications such as surveillance, search, and 
target tracking has increased in recent years, owing to significant progress in their development and 
a number of recognized advantages in their use [12, 41]. 

This report describes a principled framework for designing a planning and coordination algo- 
rithm to control a fleet of UAVs for the purpose of tracking ground targets. The algorithm runs 
on a central fusion node that collects measurements generated by sensors on-board the UAVs, con- 
structs tracks from those measurements, plans the future motion of the UAVs to maximize tracking 
performance, and sends motion commands back to the UAVs based on the plan. 

The focus of this report is to illustrate a design framework based on the theory of partially 
observable Markov decision processes (POMDPs), and to discuss practical issues related to the 
use of the framework. With this in mind, the problem scenarios presented here arc idealized, and 
arc meant to illustrate qualitative behavior of a guidance system design. Moreover, the particular 
approximations employed in the design arc examples and can certainly be improved. Neverthe- 
less, the intent is to present a design approach that is flexible enough to admit refinements to 
models, objectives, and approximation methods without damaging the underlying structure of the 
framework. 

Section 3 describes the nature of the UAV guidance problem addressed here in more detail, 
and places it in the context of the sensor resource management literature. The detailed problem 
specification is presented in Section 4, and our method for approximating the solution is discussed 
in Section 5. Several features of our approach arc already apparent in the case of a single UAV, as 
discussed in Section 6. The method is extended to multiple UAVs in Section 7, where coordination 
of multiple sensors is demonstrated. In Section 8 we illustrate the flexibility of the POMDP 
framework by modifying it to include more complex tracking objectives such as preventing track 
swaps. Finally, we conclude in Section 9 with summary remarks and future directions. 

All Technical Data contained herein is subject to the restrictions stated on the coversheet. 

UNCLASSIFIED 



Numcrica Corporation Award No.: FA9550-07-1-0360 page 1 

3    Problem Description 

The class of problems we pose in this report is a rather schematic representation of the UAV 
guidance problem. Simplifications are assumed for ease of presentation and understanding of the 
key issues involved in sensor coordination. These simplifications include: 

2-D motion: The targets arc assumed to move in a plane on the ground, while the UAVs arc 
assumed to fly at a constant altitude above the ground. 

position measurements: The measurements generated by the sensors arc 2-D position measure- 
ments with associated covariances describing the position uncertainty. A simplified visual 
sensor (camera plus image processing) is assumed, which implies that the angular resolution 
is much better than the range resolution. 

perfect tracker: We assume that there are no false alarms and no missed detections, so exactly 
one measurement is generated for each target visible to the sensor. Also, perfect data associ- 
ation is usually assumed, so the tracker knows which measurement came from which target, 
though this assumption is relaxed in Section 8 when track ambiguity is considered. 

Nevertheless, the problem class has a number of important features that influence the design of a 
good planning algorithm. These include: 

dynamic constraints: These appear in the form of constraints on the motion of the UAVs. Specif- 
ically, the UAVs fly at a constant speed and have bounded lateral acceleration in the plane, 
which limits their turning radius. This is a reasonable model of the characteristics of small 
fixed-wing aircraft. The presence of dynamic constraints implies that the planning algorithm 
needs to include some form of lookahcad for good long-term performance. 

randomness: The measurements have random errors, and the models of target motion arc random 
as well. However, in most of our simulations the actual target motion is not random. 

spatially varying measurement error: The range error of the sensor is an affine function of 
the distance between the sensor and the target. The bearing error of the sensor is constant, 
but that translates to a proportional error in Cartesian space as well. This spatially varying 
error is what makes the sensor placement problem meaningful. 

occlusions: There arc occlusions in the plane that block the visibility of targets from sensors 
when they are on opposite sides of an occlusion. The occlusions arc generally collections of 
rectangles in our models, though in the case studies presented they appear more as walls (thin 
rectangles). Targets arc allowed to cross occlusions, and of course the UAVs arc allowed to 
fly over them; their purpose is only to make the observation of targets more challenging. 

tracking objectives: The performance objectives considered here arc related to maintaining the 
best tracks on the targets. Normally, that means minimizing the mean squared error between 
tracks and targets, but in Section 8 we also consider the avoidance of track swaps as a 
performance objective. This differs from most of the guidance literature, where the objective 
is usually posed as interpolation of way-points. 

In Section 4 wc demonstrate that the UAV guidance problem described here is a POMDP. One 
implication is that the exact problem is in general formally undecidablc [24], so one must resort 
to approximations. However, another implication is that the optimal solution to this problem is 
characterized by a form of Bellman's principle, and this principle can be used as a basis for a 
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structured approximation of the optimal solution. In fact, the main goal of our research is to 
demonstrate that the design of the UAV guidance system can be made practical by a limited and 
precisely understood use of heuristics to approximate the ideal solution. That is, the heuristics 
are used in such a way that their influence may be relaxed and the solution improved as more 
computational resources become available. 

The UAV guidance problem considered here falls within the class of problems known as sensor 
resource management [29]. In its full generality, sensor resource management encompasses a large 
body of problems arising from the increasing variety and complexity of sensor systems, including 
dynamic tasking of sensors, dynamic sensor placement, control of sensing modalities (such as wave- 
forms), communication resource allocation, and task scheduling within a sensor [15]. A number of 
approaches have been proposed to address the design of algorithms for sensor resource management. 
which can be broadly divided into two categories: myopic and nonmyopic. 

Myopic approaches do not explicitly account for the future effects of sensor resource management 
decisions (i.e., there is no explicit planning or "lookahead"). One approach within this category 
is based on fuzzy logic and expert systems [28], which exploits operator knowledge to design a 
resource manager. Another approach uses information-theoretic measures as a basis for sensor 
resource management [36, 11, 20]. In this approach, sensor controls arc determined based on 
maximizing a measure of "information." 

Nonmyopic approaches to sensor resource management have gained increasing interest because 
of the need to account for the kinds of requirements described in this report, which imply that 
foresight and planning arc crucial for good long-term performance. In the context of UAV coor- 
dination and control, such approaches include the use of guidance rules [17, 21, 35, 41], oscillator 
models [16], and information-driven coordination [12, 34]. A more general approach to dealing 
with nonmyopic resource management involves stochastic dynamic programming formulations of 
the problem (or, more specifically, POMDPs). As pointed out in Section 5, exact optimal solutions 
are practically infeasible to compute. Therefore, recent effort has focused on obtaining approximate 
solutions, and a number of methods have been developed (e.g., sec [9, 13, 14, 18, 22, 23]). Our 
research contributes to the further development of this thrust by introducing a new approximation 
method, called nominal belief-state optimization, and applying it to the UAV guidance problem. 

Approximation methods for POMDPs have been prominent in the recent literature on artificial 
intelligence (AI), under the rubric of probabilistic robotics [40]. In contrast to much of the POMDP 
methods in the AI literature, a unique feature of our current approach is that the state and action 
spaces in our UAV guidance problem formulation is continuous. We should note that some recent 
AI efforts have also treated the continuous case; e.g., see [39, 30, 32], though in different settings. 

4    POMDP Specification and Solution 

In this section we describe the mathematical formulation of our guidance problem as a partially 
observable Markov decision process (POMDP). We first provide a general definition of POMDPs. 
We provide this background exposition for the sake of completeness—readers who already have 
this background can skip this subsection. Then we proceed to the specification of the POMDP 
for the guidance problem. Finally, we discuss the nature of POMDP solutions, leading up to a 
discussion of approximation methods in the next section. For a full treatment of POMDPs and 
related background, see [2]. For a discussion of POMDPs in sensor management, see [15]. 
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4.1    Definition of POMDP 

A POMDP is a controlled dynamical process, useful in modeling a wide range of resource control 
problems. To specify a POMDP model, we need to specify the following components: 

• 

• 

• 

a set of states (the state space) and a distribution specifying the random initial state; 

a set of possible actions; 

a state-transition law specifying the next-state distribution given an action taken at a current 
state; 

• a set of possible observations; 

• an observation law specifying the distribution of observations depending on the current state 
and possibly the action; 

• a cost function specifying the cost (real number) of being in a given state and taking a given 
action. 

In the next subsection, we specify these components for our guidance problem. 
As a POMDP evolves over time as a dynamical process, we do not have direct access to the 

states. Instead, all we have arc the observations generated over time, providing us with clues of 
the actual underlying states (hence the term partially observable). These observations might, in 
some cases, allow us to infer exactly what states actually occurred. However, in general, there will 
be some uncertainty in our knowledge of the states. This uncertainty is represented by the belief 
state, which is the a posteriori distribution of the underlying state given the history of observations. 
The belief states summarize the "feedback" information that is needed for controlling the system. 
Conveniently, the belief state can easily be tracked over time using Baycsian methods. Indeed, as 
pointed out below, in our guidance problem the belief state is a quantity that is already available 
(approximately) as track states. 

Once we have specified the above components of a POMDP, the guidance problem is posed as 
an optimization problem where the expected cumulative cost over a time horizon is the objective 
function to be minimized. The decision variables in this optimization problem are the actions to be 
applied over the planning horizon. However, because of the stochastic nature of the problem, the 
optimal actions are not fixed but are allowed to depend on the particular realization of the random 
variables observed in the past. Hence, the optimal solution is a feedback-control rule, usually called 
a policy. More formally, a policy is a mapping that, at each time, takes the belief state and gives 
us a particular control action, chosen from the set of possible actions. What we seek is an optimal 
policy. We will characterize optimal policies in a later subsection, after we discuss the POMDP 
formulation of the guidance problem. 

4.2    POMDP Formulation of Guidance Problem 

To formulate our guidance problem in the POMDP framework, we must specify each of the above 
components as they relate to the guidance system. This subsection is devoted to this specification. 

States. In the guidance problem, three subsystems must be accounted for in specifying the 
state of the system: the scnsor(s), the target(s), and the tracker. More precisely, the state at 
time k is given by Xk = (sk,Q,£k,Pk), where sk represents the sensor state, Ck represents the 
target state, and (Ot, Pk) represents the track state. The sensor state Sk specifies the locations and 
velocities of the sensors (UAVs) at time k.  The target state £* specifies the locations, velocities. 
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and accelerations of the targets at time k. Finally, the track state {£k,Pk) represents the state of 
the tracking algorithm: ^ is the posterior mean vector and Pf, is the posterior covariancc matrix, 
standard in Kalman filtering algorithms. The representation of the state into a vector of stale 
variables is an instance of a factored model [5]. 

Action. In onr guidance problem, we assume a standard model where each UAV flies at con- 
stant speed and its motion is controlled through turning controls that specify lateral instantaneous 
accelerations. The lateral accelerations can take values in an interval [-amax,amax], where omax 

represents a maximum limit on the possible lateral acceleration. So the action at time A: is given by 
at € [-1, l]^•, where Nsens is the number of UAVs, and the components of the vector a* specify 
the normalized lateral acceleration of each UAV. 

State-transition law. The state-transition law specifies how each component of the state 
changes from one time step to the next. In general, the transition law takes the form 

Xk+i ~ Pk(- | Xk) 

for some time-varying distribution p*.. However, the model for the UAV guidance problem constrains 
the form of the state transition law. The sensor state evolves according to 

Sk+i = ip(sk,ak), 

where ij> is the map that defines how the state changes from one time step to the next depending 
on the acceleration control as described above. The target state evolves according to 

Cfc+l = /(Cfc) + vk 

where Vk represents an i.i.d. random sequence and / represents the target motion model. Most 
of our simulation results use a nearly constant velocity (NCV) target motion model, except for 
Section 7.2 which uses a nearly constant acceleration (NCA) model. In all cases / is linear, and Vk 
is normally distributed. We write i>k ~ A/^O, Qk) to indicate the noise is normal with zero mean 
and covariancc Qk- 

Finally, the track state (£k,Pk) evolves according to a tracking algorithm, which is defined by 
a data association method and the Kalman filter update equations. Since our focus is on UAV 
guidance and not on practical tracking issues, in most cases a "truth tracker" is used, which always 
associates a measurement with the track corresponding to the target being detected. Only in 
Section 8 is a non-ideal data association considered, for the purpose of evaluating performance 
with ambiguous associations. 

Observations and observation law. In general, the observation law takes the form 

2fc ~<7fc(- | Zfc) 

for some time-varying distribution qk- In our guidance problem, since the state has four separate 
components, it is convenient to express the observation with four corresponding components (a 
factored representation). The sensor state and track state are assumed to be fully observable. So, 
for these components of the state, the observations are equal to the underlying state components: 

4 = *k,      4 = £fc<      zk = pk- 

The target state, however, is not directly observable; instead, what we have are random measure- 
ments of the target state that are functions of the locations of the targets and the sensors. 

Let C£os and .s£os' represent the position vectors of the target and sensor, respectively, and lei 
MCfci sk) be a boolean-valued function that is true if the line of sight from s£os to C£°h is unobscured 
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by any occlusions. Furthermore, we define a 2D position covariance matrix Rk((k, sk) that reilects 
a 10% uncertainty in the range from sensor to target, and 0.017T radian angular uncertainty, where 
the range is taken to be at least 10 meters. Then the measurement of the target state at time k is 
given by 

C _ I Cfc°S + wk if MCfc.Sfc) = true, 
1 0 (no measurement)        if h{Qk,sk) = false, 

where wk represents an i.i.d. sequence of noise values distributed according to the normal distribu- 

tion A/"(0,Hfc(Cfc,«fc)). 
Cost function. The cost function we most commonly us in our guidance problem is the mean 

squared tracking error, defined by 

C{xk,ak)=      E      ||Cfc+i -£fc+i||2 [ xk,ak 
Vk,Wk+l 

(4.1) 

In Section 8.1 we describe a different cost function which we use for detecting track ambiguity. 
Belief state. Although not a part of the POMDP specification, it is convenient at this point 

to define our notation for the belief state for the guidance problem. The belief state at time k is 
given by 

bk = (bs
k,blbl,br) 

where 

bi(s) = S(s - sk) 

b[.    updated with z£ using Baycs theorem 

&&) = *(£-&) 
b£(P) = 6(P-Pjt). 

Note that those components of the state that arc directly observable have delta functions repre- 
senting their corresponding belief-state components. 

We have deliberately distinguished between the belief state and the track state (the internal 
state of the tracker). The reason for this distinction is so that the model is general enough to 
accommodate a variety of tracking algorithms, even those that arc acknowledged to be severe 
approximations of the actual belief state. For the purpose of control, it is natural to use the 
internal state of the tracker as one of the inputs to the controller (and it is intuitive that the 
control performance would benefit from the use of this information). Therefore, it is appropriate to 
incorporate the track state into the the POMDP state space, even if this is not prima facie obvious. 

4.3    Optimal Policy 

Given the POMDP formulation of our problem, our goal is to select actions over time to minimize 
the expected cumulative cost (we take expectation here because the cumulative cost is a random 
variable, being a function of the random evolution of xk). To be specific, suppose we are interested 
in the expected cumulative cost over a time horizon of length H: k — 0,1,..., H — 1. The problem 
is to minimize the cumulative cost over horizon H, given by 

JH = E 

H-\ 

^ C(xk,ak) 
Lfc=0 

(4.2) 
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The goal is to pick the actions so that the objective function is minimized. In general, the action 
chosen at each time should be allowed to depend on the entire history up to that time (i.e.. the 
action at time A: is a random variable that is a function of all observable quantities up to time k). 
However, it turns out that if an optimal choice of such a sequence of actions exists, then there is an 
optimal choice of actions that depends only on "belief-state feedback." In other words, it suffices 
for the action at time A: to depend only on the belief state at time k, as alluded to before. 

Let 6fc be the belief state at time k, which is a distribution over states, 

bk(x) = PXk(x | zo,...,zk; a0 afc_i) 

updated incrementally using Baycs rule. The objective can be written in terms of belief states: 

~H-I 

JH = E £ <#• fc,«fcj 
fc=0 

>,«)=/ c{b,a)=     C{x,a)b{x)dx (4.3) 

where E[- | b0] represents conditional expectation given bo. Let B represent the set of possible 
belief states, and A the set of possible actions. So what we seek is, at each time k, a mapping 
7r£ : B —> A such that if wc perform action ak — ^l(bk), then the resulting objective function is 
minimized. This is the desired optimal policy. 

The key result in POMDP theory is Bellman's principle. Let Jff(bo) be the optimal objective 
function value (over horizon H) with bo as the initial belief state. Then, Bellman's principle states 
that 

"o(M = argmin{c(60,a) + E[j^i_1(bi) | b0,a]} 
a 

is an optimal policy, where b\ is the random next belief state (with distribution depending on «), 
E[- I bo. a] represents conditional expectation (given bo and action a) with respect to the random 
next state b\, and J^j_l(bi) is the optimal cumulative cost over the time horizon 1,... ,H starting 
with belief state b\. 

Define the Q-value of taking action a at state bo as 

QH(bo,a) = c(bQ.a) + E[j„_l(bi) \ b0,a] . 

Then, Bellman's principle can be rewritten as 

7To(60) = argmin<2w(60,a), 
a 

i.e., the optimal action at belief state bo is the one with smallest Q-value at that belief state. Thus, 
Bellman's principle instructs us to minimize a modified cost function (QH) that includes the term 
E[J^_J indicating the expected future cost of an action; this term is called the expected cost-to-go 
(ECTG). By minimizing the Q-valuc that includes the ECTG, the resulting policy has a lookahead 
property that is a common theme among POMDP solution approaches. 

For the optimal action at the next belief state b\, we would similarly define the Q-value 

QH-i{bi.a) = c(bi,a) + E[j^_2(62) | &i,a] , 

where 62 is the random next belief state and J^_2{b2) is the optimal cumulative cost over the time 
horizon 2,...,H starting with belief state 62- Bellman's principle then states that the optimal 
action is given by 

TT*(6I) = argmin<5//_i(61.a). 
a 
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A common approach in on-line optimization-based control is to assume that the horizon is long 
enough that the difference between QH and QH-\ is negligible. This has two implications: first, the 
time-varying optimal policy 7r* may be approximated by a stationary policy, denoted n*; second, 
the optimal policy is given by 

7r*(6) = a.rgmmQH(b,a), 
a 

where now the horizon is fixed at H regardless of the current time k. This approach is called receding 
horizon control, and is practically appealing because it provides lookahead capability without the 
technical difficulty of infinite-horizon control. Moreover, there is usually a practical limit to how 
far models may be usefully predicted. Henceforth we will assume the horizon length is constant 
and drop it from our notation. 

In summary, we seek a policy 71-*(6) that, for a given belief state 6, returns the action a that 
minimizes Q(b,a), which in the reccding-horizon case is 

Q(b,a) = c{b,a) + E[J*(b') \b,a], 

where b' is the (random) belief state after applying action a at belief state b, and c(b,a) is the 
associated cost. The second term in the Q-value is in general difficult to obtain, especially because 
the belief-state space is large. For this reason, approximation methods arc necessary. In the next 
section, we describe our algorithm for approximating argmina Q(6, a). 

We should re-emphasize here that the action space in our UAV guidance problem is a hyper- 
cube, which is a continuous space of possible actions. The optimization involved in performing 
argminH Q(b, a) therefore involves a search algorithm over this hypcrcubc. The focus of our re- 
search is on a new method to approximate Q(b,a) and not on how to minimize it. Therefore', we 
simply use a generic search method to perform the minimization. More specifically, in our simula- 
tion studies, we used MATLAB'S f mincon function. We should point out that in related work, other 
authors have considered the problem of designing a good search algorithm (e.g., [33]). 

5    Approximation Method 

There arc two aspects of a general POMDP that make it intractable to solve exactly. First, it 
is a stochastic control problem, so the dynamics are properly understood as constraints on dis- 
tributions over the state space, which are infinite-dimensional in the case of a continuous state 
space as in our tracking application. In practice, solution methods for Markov decision processes 
employ some parametric representation or nonparametric (i.e., Monte Carlo or "particle'") repre- 
sentation of the distribution, to reduce the problem to a finite-dimensional one. Intelligent choices 
of finite-dimensional approximations are derived from Bellman's principle characterizing the opti- 
mal solution. POMDPs, however, have the additional complication that the state space itself is 
infinite-dimensional, since it includes the belief state which is a distribution; hence, the belief state 
must also be approximated by some finite-dimensional representation. In Section 5.1 we present a 
finite-dimensional approximation to the problem called nominal belief-state optimization (NBO), 
which takes advantage of the particular structure of the tracking objective in our application. 

Secondly, in the interest of long-term performance, the objective of a POMDP is often stated 
over an arbitrarily long or infinite horizon. This difficulty is typically addressed by truncating the 
horizon to a finite length, the effect of which is discussed in Section 5.2. 

Before proceeding to the detailed description of our NBO approach, we first make two sim- 
plifying approximations that follow from standard assumptions for tracking problems.   The first 
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approximation, which follows from the assumption of a correct tracking model and Gaussian statis- 
tics, is that the belief-state component for the target can be expressed as 

bi(o=m-Sk,Pk) (5.1) 

and can be updated using (extended) Kalman filtering. We adopt this approximation for the 
remainder of this report. The second approximation, which follows from the additional assumption 
of correct data association, is that the cost function can be written as 

c{h,ak)= f     E     [|Kfc+i-6fc+i||2|sfe,C.&,afcU^OdC 

= TrPk+1. (5.2) 

In Section 8, we study the impact of this approximation in the context of tracking with data 
association ambiguity (i.e., when we do not necessarily have the correct data association), and 
consider a different cost function that explicitly takes into account the data association ambiguity 

5.1     Nominal Belief-State Optimization (NBO) 

A number of POMDP approximation methods have been studied in the literature. It is instructive 
to review these methods briefly, to provide some context for our NBO approach. These methods 
cither directly approximate the Q-value Q(b. a) or indirectly approximate the Q-valuc by approx- 
imating the cost-to-go J*(b), and include heuristic expected cost-to-go (ECTG) [19], parametric 
approximation [4, 38], policy rollout [3], hindsight optimization [8, 42], and foresight optimization 
(also called open loop feedback control (OLFC)) [2]. The following is a summary of these methods, 
exposing the nature of each approximation (for a detailed discussion of these methods applied to 
sensor resource management problems, see [9]): 

heuristic expected Q(b, a) « c(b, a) 4- 7-/V(6, a) 
cost-to-go (ECTG) 

parametric      approxima-    Q(b.a) « Q(b,a,6) 
tion 

(e.g., Q-learning) 

policy rollout Q{b, a) ss c(6, a) + E [J*4'—(ft') | b) 

hindsight optimization J*(b) ~ E min \~]c(bk,ak) I b 
k 

foresight optimization J*{b) ~ min E Y^ r(bk,ak) \ b.(ak)k 
(OLFC) (ak)k        k 

The notation {a^k means the ordered list (ao, a,\,...). Typically, the expectations in the last three 
methods arc approximated using Monte Carlo methods. 

The NBO approach may be summarized as 

J*(b) w minV'c(Sfe,afc), 
(a*)* ^~ 

(5.3) 

where (bfc)fc represents a nominal sequence of belief states. Thus, it resembles both the hindsight 
and foresight optimization approaches, but with the expectation approximated by one sample. 
The reader will notice that hindsight and foresight optimization differ in the order in which the 
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expectation and minimization is taken. However, because NBO involves only a single sample- 
path (instead of an expectation), NBO straddles this distinction between hindsight and foresight 
optimization. 

The central motivation behind NBO is computational efficiency. If one cannot afford to simulate 
multiple samples of the random noise sequences to estimate expectations, and only one realization 
can be chosen, it is natural to choose the "nominal" sequence (e.g., maximum likelihood or mean). 
The nominal noise sequence leads to a nominal belief-state sequence (bk)k as a function of the 
chosen action sequence (ak)k- Note that in NBO, as in foresight optimization, the optimization is 
over a fixed sequence (ak)k rather than a noise-dependent sequence or a policy. 

There arc two points worth emphasizing about the NBO approach. First, the nominal belief- 
state sequence is not fixed, as (5.3) might suggest; rather, the underlying random variables are 
fixed at nominal values and the belief states become deterministic functions of the chosen actions. 
Second, the expectation implicit in the incremental cost c(bk,ak) (recall (4.1) and (4.3)) need not 
be approximated by the "nominal" value. In fact, for the mcan-squarcd-error cost we use in the 
tracking application, the nominal value would be 0. Instead, we use the fact that the expected cost 
can be evaluated analytically by (5.2) under the previously stated assumptions of correct tracking 
model, Gaussian statistics, and correct data association. 

Because NBO approximates the belief-state evolution but not the cost evaluation, the method 
is suitable when the primary effect of the randomness appears in the cost, not in the state predic- 
tion. Thus, NBO should perform well in our tracking application as long as the target motion is 
reasonably predictable with the tracking model within the chosen planning horizon. 

The general procedure for using the NBO approximation may be summarized as follows: 

1. Write the state dynamics as functions of zero-mean noise. For example, borrowing from the 
notation of Section 4.2: 

Xk+i = f(xk,ak) + vk, vk ~N(0,Qk) 

Zk= g{xk) + Wk, wk~Af(0,Rk)- 

2. Define nominal belief-state sequence (b\,... ,bn-i)- 

h+i=$(h,ak,Vk,Wk+l)     =>     fyfc+i = $(6fc,afc,0,0) 

bo = b0 

In the linear Gaussian case, this is the MAP estimate of bk- 

3. Replace expectation over random future belief states 

// 

JH(bo) = k  E 
01 °H 

^2c(bk,ak) 
U=i 

with the sample given by nominal belief state sequence 

;/ 

Jfl(M*E4,4 (5.4) 
fc=i 

4. Optimize over action sequence (ao, • • •, a//_i). 
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As pointed out before, because our focus here is to introduce NBO as a new approximation method. 
the optimization in the last step above is taken to be a generic optimization problem that is solved 
using a generic method. In our simulation studies, we used MATLAB'S fmincon function. 

In the specific case of tracking, recall that the belief state o"k corresponding to the target state 
Qk is identified with the track state (£k,Pk) according to (5.1). Therefore, the nominal belief state 

bf. evolves according to the nominal track state trajectory {£k,Pk) given by the (extended) Kalman 
filter equations with an exactly zero noise sequence. This reduces to 

^(0 = A^(c-&,flk) 

Pk +i (FkPkFk
T + Qky

l + Hl+1[Rk+1(ik, .sk)}~lHk+1 

where the (linearized) target motion model is given by 

Cfc+i = **& + «*. ^~A/"(0.Qfc) 

Zk = HkQk + tvk,       wk ~ A/"(0, Rk(Ck, «fc)) 

The incremental cost given by the nominal belief state is then 

Wtarg 

c(bk,ak) = TrPk+1 = ^TVP^+1 

i=\ 

where Nta.rs is the number of targets. 

5.2    Finite Horizon 

In the guidance problem we arc interested in long-term tracking performance. For the sake of expo- 
sition, if we idealize this problem as an infinite-horizon POMDP (ignoring the attendant technical 
complications), Bellman's principle can be stated as 

J^{bo) = min E 
H-\ 

5>(&fc) *(&*))+ •/;,(&*) 
fc=0 

(5.5) 

for any H < oo. The term E[J<^(&//)] is the expected cost to go (ECTG) from the end of the 
horizon H. If H represents the practical limit of horizon length, then (5.5) may be approximated 
in two ways: 

•Jx(bo) ~ min E 
7T 

JM) 

Lfc=o 
H-\ 

J2c(h^(bk)) + j(b„) 
fc=0 

(truncation) 

(HECTG). 

The first amounts to ignoring the ECTG term, and is often the approach taken in the literature. The 
second replaces the exact ECTG with a heuristic approximation, typically a gross approximation 
that is quick to compute. To benefit from the inclusion of a heuristic ECTG (HECTG) term in the 
cost function for optimization, J need only be a better estimate of J^ than a constant. Moreover, 
the utility of the approximation is in how well it rank actions, not in how well it estimates the 
ECTG. Section 6.4 will illustrate the crucial role this term can play in generating a good action 
policy. 
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6    Single UAV Case 

Wc begin our assessment of the performance of a POMDP-bascd design with the simple case of a 
single UAV and two targets, where the two targets move along parallel straight-line paths. This is 
enough to demonstrate the qualitative behavior of the method. It turns out that a straightforward 
but naive implementation of the POMDP approach leads to performance problems, but these can 
be overcome by employing an approximate expected cost-to-go (ECTG) term in the objective, and 
a two-phase approach for the action search. 

6.1 Scenario Trajectory Plots 

First wc describe what is depicted in the scenario trajectory plots that appear throughout the 
remaining sections. See, for example, Figures 6.1 and 6.2. Target location at each measurement 
time is indicated by a small red dot. The targets in most scenarios move in straight horizontal 
lines from left to right at constant speed. The track covariances arc indicated by blue ellipses at 
each measurement time; these are 1-sigma ellipses corresponding to the position component of the 
covariances, centered at the mean track position indicated by a black dot. (However, this coloring 
scheme is modified in later sections in order to better distinguish between closely spaced targets.) 

The UAV trajectory is plotted as a thin black line, with an arrow periodically. Large X's 
appear on the tracks that arc synchronized with the arrows on the UAV trajectory, to give a sense 
of relative positions at any time. 

Finally, occlusions are indicated by thick light green lines. When the line of sight from a sensor 
to a target intersects an occlusion, that target is not visible from that sensor. This is a crude 
model of buildings or walls that block the visibility of certain areas of the ground from different 
perspectives. It is not meant to be realistic, but serves to illustrate the effect of occlusions on the 
performance of the UAV guidance algorithm. 

6.2 Results with no ECTG 

Following the NBO procedure, our first design for guiding the UAV optimizes the cost function 
(5.4) within a receding horizon approach, issuing only the command <zo and rcoptimizing at the 
next step. In the simplest case, the policy is a myopic one: choose the next action that minimizes 
the immediate cost at the next step based on current state information. This is equivalent to a 
receding horizon approach with H = 1 and no ECTG term. The behavior of this policy in a scenario 
with two targets moving at constant velocity along parallel paths is illustrated in Figure 6.1. For 
this scenario, the behavior with H > 1 (applying NBO) is not qualitatively different. The UAV's 
speed is greater than the targets', so the UAV is forced to loop or weave to reduce its average speed. 
Moreover, the UAV tends to fly over one target then the other, instead of staying in between. There 
are two main reasons for this. First, the measurement noise is non-isotropic, so it is beneficial to 
observe the targets from different angles over time. Second, the trace objective is minimized by 
locating the UAV over the target with the greater covariancc trace. 

To see this, consider a simplified one-dimensional tracking problem with stationary targets on 
the real line with positions x\ and X2, sensor position y, and noisy measurement of target positions 
given by 

z{ ~ Af(xi, p{y-Xi)2 + r) .     i = l,2. 

This noise model is analogous to the relative range uncertainty defined in Section 4.2. If the current 
"track" variances arc given by p\ and p2, then the variances after updating with the Kalman filter, 
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Figure 6.1: No occlusion with H — 1 

Figure 6.2: Gap occlusion with H = 1 

as a function of the new sensor location y, arc given by 

p(y ~ xi)2 + r 

pt(y) = (i~ki)Pi = 
p(y - Xi)2 + r + pt 

Pi,     * = 1,2, 

and the trace of the overall (diagonal) covariance is c(y) = Pi(y) + P^iv)- ^ ls not hard to show 
that if the targets arc separated enough, c(y) has local minima at about y — x\ and y — x-2 with 
values of approximately p2 + P\r/(p\ + r) and p\ + P2r/(P2 + r), respectively. Therefore, the best 
location of the sensor is at about x\ if p\ > p2, and at about x^ if the opposite is true. 

Thus, the simple myopic policy behaves in a nearly optimal manner when there arc no occlusions. 
However, if occlusions are introduced, some lookahcad (e.g., longer planning horizon) is necessary to 
anticipate the loss of observations. Figure 6.2 illustrates what happens when the planning horizon 
is too short. In this scenario, there arc two horizontal walls with a gap separating them. If the 
UAV cannot cross the gap within the planning horizon, there is no apparent benefit to moving 

Figure 6.3: Gap occlusion with H = 4 
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Figure 6.4: Gap occlusion with H — 4, search initialized with H = 1 plan 

away from the top target toward the bottom target, and the track on the bottom target goes stale. 
On the other hand, with H = 4 the horizon is long enough to realize the benefit of crossing the 
gap, and the weaving behavior is recovered (sec Figure 6.3). 

In addition to the length of the planning horizon, another factor that can be important in 
practical performance is the initialization of the search for the action sequence. The result of the 
policy of initializing the four-step action sequence with the output of the myopic plan (// = 1) 
is shown in Figure 6.4. The search fails to overcome the poor performance of the myopic plan 
because the search starts near a local minimum (recall that the trace objective has local minima in 
the neighborhood of each target). Bellman's principle depends on finding the global minimum, but 
our search is conducted with a gradient-based algorithm (MATLAB'S fmincon function), which is 
susceptible to local minima. One remedy is to use a more reliable but expensive global optimization 
algorithm. Another remedy, the one we chose, is to use a more intelligent initialization for the 
search, using a penalty term described in the next section. 

6.3    Weighted Trace Penalty 

The performance failures illustrated in the previous section arc due to the lack of sensitivity in our 
finite-horizon objective function (5.4) to the cost of not observing a target. When the horizon is too 
short, it seems futile to move toward an unobserved target if no observations can be made within 
the horizon. Likewise, if the action plan required to make an observation on an occluded target 
deviates far enough from the initial plan, it may not be found by a local search because locally there 
is no benefit to moving toward the occluded target. To produce a solution closer to the optimal 
infinite-horizon policy, the benefit of initial actions that move the UAV closer to occluded targets 
must be exposed somehow. 

One way to expose that benefit is to augment the cost function with a term that explicitly 
rewards actions that bring the UAV closer to observing an occluded target. However, such modifi- 
cations must be used with caution. The danger of simply optimizing a heuristically modified cost 
function is that the heuristics may not apply well in all situations. Bellman's principle informs 
us of the proper mechanism to include a term modeling a "hidden" long-term cost: the expected 
cost-to-go (ECTG) term. Indeed, the blame for poor performance may be placed on the use of 
truncation rather than HECTG as the finite-horizon approximation to the infinite-horizon cost (sec- 
Section 5.2). 

In our tracking application, the hidden cost is the growth of the covariancc of the track on an 
occluded target while it remains occluded. Wc estimate this growth by a weighted trace penalty 
(WTP) term, which is a product of the current covariancc trace and the minimum distance to 
observability (MDO) for a currently occluded target, a term we define precisely below.   With the 
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• target 
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\ sensor 

Figure 6.5: Minimum distance to observability 

UAV moving at a constant speed, this is roughly equivalent to a scaling of the trace by the time 
it takes to observe the target. When combined with the trace term that is already in the cost 
function, this amounts to an approximation of the track covariance at the time the target is finally 
observed. More accurate approximations are certainly possible, but this simple approximation is 
sufficient to achieve the desired effect. 

Specifically, the terminal cost or ECTG term using the WTP has the form 

J(b) = JWTP(b) := iD(s, e) Tfc P\ (6.1) 

where 7 is a positive constant, i is the index of the worst occluded target 

i = argmax Tr Pl 

2 — {i I £' invisible from s} , 

and D{s,^) is the MDO, i.e., the distance from the sensor location given by s to the closest point 
pMDO(s, £) from which the target location given by f is observable. Figure 6.5 is a simple illustration 
of the MDO concept. Given a single rectangular occlusion, pMD0(s, £) and D(s,£) can be found 
very easily. Given multiple rectangular occlusions, the exact MDO is cumbersome to compute, so 
we use a fast approximation instead. For each rectangular occlusion j, we compute pfD0(s,€) and 
Dj(s,£) as if j were the only occlusion. Then we have D(s,£) > maxy Dj(s,£) > 0 whenever £ is 
occluded from s, so we use maxj Dj(s,£) as a generally suitable approximation to D(s,£). 

The reason a worst-case among the occluded targets is selected, rather than including a term 
for each occluded target, is that this forces the UAV to at least obtain an observation on one target 
instead of being pulled toward two separate targets and possibly never observing cither one. The 
true ECTG certainly includes costs for all occluded targets. However, given that the ECTG can 
only be approximated, the quality of the approximation is ultimately judged by whether it leads 
to the correct ranking of action plans within the horizon, and not by whether it closely models the 
true ECTG value. We claim that by applying the penalty to only the worst track covariance, the 
chosen actions arc closer to the optimal policy than what would result by applying the penalty to 
all occluded tracks. 

6.4    Results with WTP for ECTG 

Let WTP(//) denote the procedure of optimizing the NBO cost function with horizon length H 
plus the WTP estimate of the ECTG: 

H-\ 

min      Y] c(bk,ak) + JWTP(bH). (6.2) 
n u    1    1     ' ao,...,aH-i 

k=0 
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Figure 6.6: Behavior of WTP(l) 

Initially, we eonsider the use of WTP(l) in two different roles: adapting the horizon length and 
initializing the action search. Subsequently, we consider the effect of the terminal cost in WTP(//) 
with H > 1. 

Figure 6.6 shows the behavior of WTP(l) on the gap scenario previously considered, using 
a penalty weight of just 7 = 10~6. Comparing with Figure 6.2, which has the same horizon 
length but no penalty term, we see that the WTP has the desired effect of forcing the UAV to 
alternately visit each target. Therefore, the output of WTP(l) is a reasonable starting point for 
predicting the trajectory arising from a good action plan. Since WTP(l) is really a form of Q-value 
approximation (namely the heuristic ECTG approach mentioned in the beginning of Section 5.1), 
it is not surprising that it generates a nonmyopic policy that outperforms the myopic policy, even 
though both policies evaluate the incremental cost c at only one step. 

By playing out a sequence of applications of WTP(l)—which amounts to a sequence of one- 
dimensional optimizations—we can quickly generate a prediction of sensor motion that is useful for 
adapting the planning horizon and initializing the multi-step action search, potentially mitigating 
the effects seen in Figures 6.2 and 6.4. Thus, we use a three-step algorithm described as follows: 

1. Generate an initial action plan by a sequence of //max applications of WTP(l). 

2. Choose H to be the minimum number of steps such that there is no change in observability 
of any of the targets after that time, with a minimum value of Hm\n. 

3. Search for the optimal //-step action sequence, starting at the initial plan generated in step 
1. 

This can be considered a two-phase approach, with the first two steps constituting Phase I and the 
third step being Phase II. The heuristic role of WTP(l) in the above algorithm is appropriate in 
the POMDP framework, because any suboptimal behavior caused by the heuristic in Phase I has 
a chance of being corrected by the optimization over the longer horizon in Phase II, provided Hm\n 

and //rilax are large enough. Figure 6.7 shows the effectiveness of using WTP(l) to choose // and 
initialize the search. In this test, Hmill = 1 and //max = 8, and the mean value of the adaptive H is 
3.7, which corresponds approximately to H ~ 4 in Figure 6.3 but without having to identify that 
value beforehand. 

In practice, however, the horizon length is always bounded above in order to limit the computa- 
tion in any planning iteration, and the upper bound //max niay sometimes be too small to achieve 
the desired performance. Figure 6.8 illustrates such a scenario. There is only one occlusion, but it 
is far enough from the upper target that once the UAV moves sufficiently far from the occlusion, 
the horizon is too short to realize the benefit of heading toward the lower target when minimizing 
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Figure 6.7: WTP(l) used for initialization and adaptive horizon 

Figure 6.8: Effect of truncated horizon with no ECTG 

the trace objective. This is despite the fact that the search is initialized with the UAV headed 
straight down according to WTP(l). 

The remedy, of course, is to use WTP as the ECTG in Phase II, i.e., to employ WTP(W) as 
in (6.2). The effect of WTP(//) is depicted in Figure 6.9. In general, the inclusion of the ECTG 
term makes lookahcad more robust to poor initialization and short horizons. 

In general, we would not expect the optimal trajectory to be symmetric with respect to the 
two targets, because of a number of possible factors, including: (1) the location of the occlusions, 
and (2) the dynamics and the acceleration constraints on the UAV. In Figures 6.6 and 6.9, we sec 
this asymmetry in that the UAV docs not spend equal amounts of time near the two targets. In 
Figure 6.9, the position of the occlusion is highly asymmetric in relation to the path of the two 
targets—in this case, it is not surprising that the UAV trajectory is also asymmetric. In Figure 6.6, 
the two occlusions arc more symmetric, and we would expect a more symmetric trajectory in the 
long run.  However, in the short run, the UAV trajectory is not exactly symmetric because of the 

Figure 6.9: Behavior of WTP(#) policy 
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timing and direction of the UAV as it crosses the occlusion. The particular timing and direction of 
the UAV results in the need for an extra loop in some instances but not others. 

7    Multiple UAV Case 

As it stands, the procedure developed for the single UAV case is ill-suited to the case of multiple 
UAVs, because the WTP is defined with only a single sensor in mind. An extension of the WTP to 
multiple sensors is developed in Section 7.1, and in Section 7.2 this extension is applied to a new 
scenario to demonstrate the coordination of two sensors. 

7.1     Extension of WTP 

A slight modification of the WTP defined in (6.1) can certainly be used as an ECTG in scenarios 
with more than one sensor, e.g., 

j(b) =7minD(sJ,^)TrPi (7.1) 
j 

where sJ is the state of sensor j. However, this underutilizcs the sensors, because only one sensor 
can affect the ECTG. One would like the ECTG to guide two sensors toward two separate occluded 
targets if it makes sense to do so. On the other hand, if one sensor can "cover" two occluded target s 
efficiently, there is no need to modify the motion of a second sensor. The problem, therefore, is to 
decide which sensor will receive responsibility for each occluded target. 

It is natural to assign the "nearest" sensor to an occluded target, i.e., the one that minimizes 
the MDO as in (7.1). However, to account for the effect of previous assignments to that sensor, 
the MDO should not be measured along a straight line directly from the starting position of the 
sensor, but rather, along the path the sensor takes while making observations on previously assigned 
targets. In the spirit of the WTP for a single sensor, it is assumed that if multiple occluded targets 
are assigned to a sensor, the most uncertain track (the one with the highest covariancc trace) is 
the one that appears in the WTP and governs the motion of the sensor, until the target is actually 
observed; then, the next most uncertain track appears in the WTP, and so on. So, roughly speaking, 
the sensor makes observations of occluded targets in order of decreasing uncertainty 

Therefore, a multiple weighted trace penalty (MWTP) term is computed according to the fol- 
lowing procedure: 

1. Find the set of targets occluded from all sensors, and sort in order of decreasing Tr /". 

2. Set J — 0, and D} = 0 for each sensor j. 

3. For each occluded target i (in order): 

(a) Find j = argmim, {Dj• + D(sj,?)}. 

(b) If Dj =0 then set J <- J + -yD{si,?) Tr P\ 

(c) Set Dj «- Dj + D(si.C) and ^ <- pMDO(Af). 

This procedure is an approximation in several respects. First, it ignores the motion of the targets 
in the interval of time it takes the sensor to move from one pMD0 location to the next. Second, 
it ignores the dynamic constraints of the UAVs. The total distance is computed by a greedy, 
suboptimal algorithm. None of these deficiencies is insurmountable, but for the purpose of a quick 
heuristic ECTG for ranking action plans, this MWTP is sufficient. 
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7.2    Coordinated sensor motion 

Figures 7.1-7.3 show snapshots of a scenario illustrating the coordination capability of the guidance 
algorithm using the MWTP from the previous section as an ECTG term. There arc three targets 
(red, blue, and black) and two sensor UAVs (black and green). This scenario also demonstrates 
the adaptive horizon, with thin magenta and orange lines showing the UAVs' planned Phase I and 
Phase II trajectories, respectively, according to the current horizon length H. 

Initially, the three targets are divided into two regions by an occlusion, and one sensor covers 
each region. At this point H — 1 is a sufficient horizon. Then the black target heads down and 
crosses two occlusions to enter the bottom region. In response, the green UAV chases after the 
downward-bound target, while the black UAV moves to cover both upper regions—the sensors 
coordinate to maximize coverage of the targets. Figure 7.2 plots the UAV motion plans at the 
moment the planner decides to chase the downward-bound target. A large black X marks the spot 
from which the green sensor expects to first see the black target. Generally speaking, the longer 
the planning horizon, the earlier the UAVs react to the downward-bound target, and the less time 
any target remains unseen by a sensor. In the moment depicted in the figure, Phase I has predicted 
that the black target is going to cross the occlusion, and thus the adaptive horizon has increased 
to H = 6. 

Unlike the previous scenarios, this scenario features random target motion as well as random 
measurement noise. This allows a broader comparison of performance among different planning 
algorithms. Figure 7.4 shows a plot of the empirical cumulative distribution function (CDF) of 
the average tracking performance of seven algorithms: H = 1 with no ECTG term, MWTP(l), 
MWTP(3), MWTP(4), MWTP(5), MWTP(6), and MWTP(//) with adaptive H between 1 and 
6. The plot shows that use of the approximate ECTG produces substantially better performance. 
Without the MWTP term in the objective, one of the targets (usually the downward-bound one) 
is ignored when it becomes occluded. There appears to be a minor benefit to using H — 1 or 
adaptive horizon over the other settings. However, one should not make too much of this apparent 
ranking. Perturbations of the problem configuration or other parameters result in other performance 
rankings, though in all cases MWTP significantly outperforms the pure myopic policy lacking 
ECTG. 
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». 

Figure 7.1: Beginning of scenario: sensors cover separate regions 

Figure 7.2: Transition: sensors coordinate plans to cover all targets as one target moves 
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Figure 7.3: End of scenario: sensors have coordinated for maximum coverage 
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Two sensor, three target scenario; 3000 Monte Carlo Runs 
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Figure 7.4: CDF of tracking performance in multi-sensor scenario 

8     Track Ambiguity 

Track accuracy metrics such as the mean-squared-error metric proposed in Section 4.2 are not 
the only measure of tracking performance. Other considerations such as track duration and track 
continuity arc also important. In particular, when target ID or threat class information is attached 
to a track through some separate discrimination process, it is important to maintain a consistent 
association between the track and the target it represents. So-called "track swaps" (switches in 
the mapping between targets and tracks) may be caused by incorrect data association -updating 
a track with measurements from a different target—or by approximation of the true Bayesian 
update of the target state distribution that the track state represents. The latter cause is mainly 
a function of the tracking algorithm; the multiple hypothesis tracking (MHT) algorithm with an 
unlimited hypothesis set represents the true Bayesian update under standard assumptions [37], but 
any practical tracker is an approximation of the ideal. Data association ambiguity, on the other 
hand, is a function of the sensor locations as well as the tracker, and therefore minimizing this 
quantity is a suitable objective in the UAV guidance problem. In this section we demonstrate the 
flexibility of the POMDP framework by augmenting the mean-squared-error cost function with a 
term that represents the risk of a track swap, and applying the same basic algorithm to demonstrate 
how the guidance algorithm reduces the probability of a track swap in a scenario where the targets 
arc confusable. 

8.1     Detecting Ambiguity 

A challenge of this exercise is that it is hard to predict track swaps with NBO, since the full spectrum 
of uncertainty is not explored. In the context of predicting the performance of a proposed action 
sequence, one could try to detect a track swap by comparing associations of predicted track states 
and predicted target states. This approach might work within a Monte Carlo approximation method 
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such as hindsight optimization, foresight optimization, or policy rollout. With NBO, however, the 
only predicted target state is the one that comes from the maximum likelihood value of the predicted 
track state, so the best data association will always be the "correct" one. We must resort to a more 
indirect approach, measuring a quantity that serves as a predictor of a likely track swap. 

The assessment of data association ambiguity is currently a topic of concern in tracking [10], 
because of its role as an indicator of the potential for error in track states and track identity. 
Nevertheless, the ambiguity of a single mcasurement-to-track data association is not a reliable 
predictor of track swap. Consider the case of two targets that cross each other at an oblique 
angle, which arc tracked with an NCV model updated with position measurements. Despite the 
complete ambiguity of association at the point when the targets cross, a track swap is extremely 
unlikely under a reasonable track update rate because the velocity estimate is unaffected by the 
ambiguity. Furthermore, tracks can become confusablc after accumulating a scries of updates with 
slightly ambiguous data associations, none of which is egregious enough by itself to indicate trouble. 
This suggests using an extended period of data association ambiguity as a predictor of track swap; 
however, one can easily envision a scenario in which one or two misassociations is enough to cause 
a track swap. 

Similarity of target state distributions (belief states) should be a better indicator of the potential 
for a track swap. If two tracks have similar distributions, it is unlikely that the targets they represent 
can be reliably discriminated from each other, now or in the future. For this approach to work, 
the belief-state updates must reflect the inherent ambiguity of the target states. It will not suffice 
to use a single-hypothesis tracker in the prediction of belief states, even if the data association is 
coTTect as it is in the "truth tracker" used elsewhere in this report. Again, a full MHT algorithm 
is required to represent the true Bayesian update of the belief states, which is intractable exactly 
when data association is ambiguous. We have found that when the hypothesis set is truncated to 
a reasonable limit, the MHT has trouble representing uncertainty over extended periods of time. 
Instead, we use the joint probability data association (JPDA) algorithm [1] for belief-state (and 
track-state) updates in this context, because it is designed to represent track state uncertainty but 
in the compressed representation of one Gaussian distribution per track. 

The dissimilarity between distributions may be measured in several ways: Kullback-Leibler 
divergence (or alpha divergence), Bhattacharyya distance, or discordance [31], all of which have 
closed-form solutions for Gaussians. However, these measures are basically avcragc-casc measures 
of how often the state values from the two distributions arc within a small neighborhood of each 
other. It turns out that a worst-case metric is a better predictor of the potential for a track swap. 
The reason for this is that track swaps are more closely associated with instantaneous ambiguities 
in the track associations. Specifically, even if on average the state variables from two tracks are not 
often close, even a single occurrence of an ambiguous measurement can cause a track swap. The 
worst-case metric we use is defined next. 

Given a Gaussian distribution A/"(/x, P), define the "x2 value" as 

xl,P(x) := (x - nfp-^x - (JL), 

so-called because when x ~ Af (/i, P) the quantity has a \2 distribution with n degrees of freedom, 
where n is the number of components in x. This is the square of the Mahalanobis distance from 
/i to x. We define a worst-case u\2 distance" between two Gaussian distributions A/"(/xi,Pi) and 
Af(fi2,P2) as 

Dx2(m,Pi; H2,P2) •= min{d | 3x ^X^^i1) < d and xl2,p2{x) < d) 

= mjnmax{x2
11,p1(x)1 X^2,P2(X)} . 
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Note that it makes sense to compare \2 p (x) and \2 p2(
x) since they have the same distribution 

when x is drawn randomly from -A/"(/ii, Pi) and M(^2, ft), respectively. Geometrically, Dyi may be 
interpreted as the smallest d such that the ellipsoid level surfaces \ ,p (x) — d and X712^p2(

x) = d 
just touch each other. Analytically, the problem may be seen as measuring the distance between (i\ 
and H2 but using two different distance metrics. One way to use two different metrics is to consider 
the set of points "equidistant" from the two means, i.e., the points having the same distance from 
each mean using the applicable Mahalanobis distance from each mean. Then, the desired distance 
is given by the equidistant point with the least distance. Strictly speaking, Dx2 (or its square root) 
is not a distance because it does not satisfy the triangle inequality, but it docs satisfy symmetry 
and positivity, with a value of zero only when the means agree. 

The computation of Dx2 is a quasiconvex problem, which can be solved with a bisection met hod 
involving a generalized eigenvalue problem at each iteration, according to the S-proccdure [6]. This 
is a rather expensive procedure to execute as part of a single objective function evaluation. However, 
empirical tests revealed that one of the upper bounds used in the bisection method tends to be 
a constant factor of the true value in both ambiguous and unambiguous situations, so we elected 
to use that as a surrogate for Dx2. The upper bound in question is obtained by restricting the 
problem to the line segment between p.\ and fi2- 

bxi(fj.l,Pi; M2,A) :=   min max {x^,Pl(/ii + «(/i2 - Mi)), xl2,p20n + n-(/t2 - Ml))} •       (8-1) 
«€|0,1] 

If a point y lies in two intervals along that line segment starting at opposite ends, and y has the same 
\2 value d to each mean, then surely the ellipsoidal sets given by \2 p (x) < d and \2 p (x) < d 
intersect because y is contained in the intersection. Therefore, d is an upper bound on the minimum 
distance such that there is an intersection, i.e., DX2(^\,P\\ ^2,^2) > Dxi{^\,Pi\ 1^2,Pi)- The 
upper bound is computed by simply solving a quadratic equation, which determines the a e [0,1] 
such that the two \2 values in (8.1) arc equal. 

8.2    Benefits of Ambiguity Objective 

Using the method from Section 6, a sensor tracking two targets will try to stay near to both targets. 
indeed between them if possible, thereby minimizing ambiguity even without an explicit measure of 
ambiguity in the objective function. Thus to demonstrate the effect of a planner that deliberately 
seeks to minimize ambiguity requires a scenario in which at least one sensor is assigned to track at 
least three targets on its own. 

The scenario depicted in Figures 8.1 and 8.2 demonstrates a genuine trade off that has to be 
made by the planner. Two of the targets (red and blue) are traveling very close to each other. The 
third (black) target is far away from the other two. If the sensor stays near the two bottom targets 
then it has a good chance of maintaining a clear picture of which is which, but its estimate of the 
top target's state remains at a consistently poor quality. If the sensor "weaves" between the top and 
bottom targets then it can maintain a more balanced level of estimated error amongst the targets. 
but it is much more likely to confuse the identity of the bottom two. Recall from Section 6.2 thai 
weaving optimizes the mean squared tracking error objective when tracking targets that arc distant 
from each other. With the same mcan-squarcd-error objective function (approximated by Tr/3), 
the same behavior occurs in this scenario (Figure 8.1) except more time is spent in the lower region 
with the two closely spaced targets. By adding a term proportional to l/Dx2 to the cost, a penalty 
is placed on ambiguity of track states, and as seen in Figure 8.2, the result is that the sensor stays 
near the two bottom targets. 

The outcomes shown in Figures 8.1 and 8.2 arc in fact representative of the behavior of the 
two different objective functions over multiple Monte Carlo runs. Figure 8.3 plots the cumulative 
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Figure 8.1: TrP objective in ambiguity scenario 

Figure 8.2: Tr P + 7/ZX2 objective in ambiguity scenario 

i Sensor, Three Target Ambiguity Scenario; 5000 Monte Carlo Runs 
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Figure 8.3: CDF of data association error rate in ambiguity scenario 

All Technical Data contained herein is subject to the restrictions stated on the coversheet. 

UNCLASSIFIED 



Numerica Corporation Award No.: FA9550-07-1-0360 page 28 

distribution of the fraction of incorrect data associations over the course of each of 5000 Monte 
Carlo simulations. The weaving behavior produced by the trace objective clearly results in a 
higher proportion of association errors. However, as mentioned in Section 8.1, individual track to 
measurement associations are not our concern per se. but rather the correctness of the final track to 
truth association after the targets separate. The following table summarizes how frequently tracks 
are assigned to the correct target ID at the end of the scenario. Again, the benefit of including Dx2 

or Dxi for ambiguity avoidance is clear: 

objective H % correct ID 
TrP 1 70.14% 
TrP 6 58.58% 

Tr P + 1/DX2 1 97.04% 
Tr P + j/Dx2 6 97.02% 

1/DX2 1 97.20% 

(Note that in the presence of complete ambiguity between the two targets on the bottom, we could 
guess the correct target ID by a coin-flip and expect 50% accuracy.) 

While the above results demonstrate the success of our ambiguity objective in accomplishing 
what it was explicitly designed for, one additional positive outcome from this scenario may be 
surprising at first. The objective functions that include ambiguity tend to produce a better overall 
mean squared tracking error than the trace objective alone, as seen in Figure 8.4. The reason is 
the latter equality in (5.2) assumes correct data association. In other words, in the presence of 
ambiguity, the trace of the position covariancc no longer represents the mean squared track error 
relative to truth. As such, we can view the term l/Dx2 as a heuristic ECTG—the term plays a 
similar role as the ECTG term in Section 7 and contributes to improvement in the overall tracking 
performance. 

The histogram in Figure 8.5 shows a clear bimodal distribution when using the trace objective, 
apparently corresponding to the cases where a track swap docs or docs not occur, respectively. 
Although the trace objective produces good tracking performance when no track swap occurs, the 
significant second mode leads to a poor average performance result. In contrast, Figure 8.6 shows 
that when the objective includes ambiguity, the mean squared error is heavily distributed around 
a single mode with a very low weight on the second mode (even with the ambiguity objective the 
sensor occasionally produces a track swap because constraints on the UAV motion prohibit it from 
remaining in place between the two targets). 
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One Sensor, Three Target Ambiguity Scenario; 5000 Monte Carlo Runs 
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Figure 8.4: CDF of RMS track error in ambiguity scenario 
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Figure 8.5: Histogram of RMS track error, TrP objective, H=l 
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Figure 8.6: Histogram of RMS track error. TrP + ~y/Dx2 objective, H=l 

9    Conclusion 

Our main contribution in this research is a demonstration of the effectiveness of the POMDP 
formalism as a basis for designing a solution to a complex resource management problem. The 
application of ideas from POMDP theory is not straightforward because approximations must be 
made in order to develop a practical solution. Nevertheless, by grounding the design approach in 
the principles of POMDP, we can preserve the key advantages of the theoretical framework, namely 
the flexibility to handle complex models and objectives, and the lookahead nature of the solution. 

Wc have illustrated both of those advantages in the UAV guidance examples presented here. 
These simplified examples were designed to highlight some of the central issues involved in the 
practical application of POMDP-based design. They identified the benefit of a nonmyopic policy, 
the crucial importance of an approximate ECTG term in the objective, the structured roles that 
heuristics can play in the algorithm (e.g., adaptive horizon length, search initialization), and the 
ability to change the objective without major redesign. 

Wc have also presented a new approximation method called nominal belief-state optimization 
(NBO) which is particularly well-suited to the tracking application considered here, because under 
standard assumptions the expected cost can be computed analytically. As NBO is a special case 
of hindsight optimization and foresight optimization, a design based on NBO is easily extended to 
these more computationally expensive methods if more accurate representation of the randomness 
of the problem is required. 

As our main goal is to illustrate some of the practical issues involved in applying the POMDP- 
based design approach, the actual guidance system developed here is not meant to be taken as the 
best design wc could achieve. There are many directions in which the algorithm could be improved, 
including: 
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• a more accurate MDO approximation; 

• a more global search for the optimal action plan; 

• an adaptive weight on the ECTG term (which currently requires some tuning); 

• a different parameterization of the action space that allows for longer planning horizons while 
limiting the growth of the search space; 

• a limited use of Monte Carlo methods to explore alternative futures other than the nominal 
belief-state sequence. 

The conclusion wc wish to emphasize is that the principled framework of a POMDP-bascd design 
provides an understanding of where approximations are applied, leading to avenues of performance 
improvement (such as the ones listed above) as more computational resources become available. 
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